

Finding the Missing CO₂ Sink

Ott et al. GEOS-5 GMAO, GSFC

Solar Near IR Observations of CO₂ from Space

Retrieve variations in the **Record** spectra column averaged CO₂ of CO_2 and O_2 dry air mole fraction, absorption in Xco2 over the sunlit reflected sunlight hemisphere Initial Generate Surf/Atm **Synthetic** State Spectrum Instrument New Model State (inc. Difference X_{CO2} Spectra Inverse Model X_{CO2}

Validate measurements to ensure X_{CO2} accuracy of 1 ppm (0.25%)

A Perfect Launch

OCO-2 Sampling Approach

Each 1/3 of a second frame includes 8 spatial footprints with 1,016 wavelengths sampled in the O₂ A-band and Weak and Strong CO₂ bands yielding almost 1 million soundings each day

A Quick Look at the First 13 Months of Operations

Orbiting Carbon Observatory - 2 Atmospheric Carbon Dioxide Concentration (09/06/14 - 10/12/15)

Small-Scale Emission Structures

2015/01/13 Glint orbit 2848 over Los Angeles and Antelope Valley

Target Observations

Comparison of TCCON and OCO-2 X_{CO2}

Comparisons with
Total Carbon Column
Observing Network
(TCCON) stations are
being used to identify
and correct biases in
target observations.

After applying a preliminary bias correction, differences are approaching 1 ppm.

Bias Assessment

 Target observations provide a large comparison data set (>1000 soundings for each target).

- Errors in the retrieved surface pressure produce compensating errors is X_{CO2}
- Other key drivers of bias are low clouds (indicated by CO₂ or H₂O ratios) high aerosols AOD and high surface albedos

AIRS v5 CO2

OCO-2 V7r

"Top-Down" Flux Inversion Estimates

Preliminary CO₂ Flux Inversion Results

GOSAT & OCO-2 inversions indicate larger sources in tropics and larger sinks at higher latitudes [J. Liu et al.]

CO₂ flux amplitude depends on bias correction applied to OCO-2 data [D. Baker]

Partitioning of Land Biospheric Uptake

Solar-Induced Chlorophyll Fluorescence (SIF)

OCO-2 Observations of SIF

Summary

- OCO-2 was successfully launched on 2 July 2014, and began routine operations on 6 September 2014
 - Now returning about 1 million measurements each day over the sunlit hemisphere
 - Over 10% of these measurements are sufficiently cloud free to yield full-column estimates of X_{CO2}
- Over one year of data has been delivered to the Goddard Earth Sciences Data and Information Services Center (GES-DISC) for distribution to the science community
 - All data back to September 6 2014 have been reprocessed

http://disc.sci.gsfc.nasa.gov/OCO-2

• This product is now being used by the world's carbon cycle science community to identify and quantify the CO₂ sources and sinks on regional scales over the globe

Thank You for Your Attention

Questions?